Это важно.

Мы предлагаем удобный сервис для тех, кто хочет купить – продать: земельный участок, дом, квартиру, коммерческую или элитную недвижимость в Крыму. //crimearealestat.ucoz.ru/ Перепечатка материалов разрешена только при условии прямой гиперссылки //allmedicine.ucoz.com/

Поиск

Реклама

Statistics


Онлайн всього: 67
Гостей: 67
Користувачів: 0

Нас смотрят

free counters

Ссылки.

Мы предлагаем удобный сервис для тех, кто хочет купить – продать: земельный участок, дом, квартиру, коммерческую или элитную недвижимость в Крыму. //crimearealestat.ucoz.ru/

Чат

Особенности питания бактериальной клетки состоят в поступлении питательных субстратов внутрь через всю ее поверхность, а также в высокой скорости процессов метаболизма и адаптации к меняющимся условиям окружающей среды.
Типы питания. Широкому распространению бактерий способствует разнообразие типов питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы (от греч. autos – сам, trophe – пища), использующие для построения своих клеток диоксид углерода СО2 и другие неорганические соединения, и гетеротрофы (от греч. heteros – другой, trophe – пища), питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.
Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или животных, относят к патогенным и условно-патогенным. Среди патогенных микроорганизмов встречаются облигатные и факультативные паразиты (от греч. parasites – нахлебник). Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.
В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофны-ми (от греч. lithos – камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, – органотрофами.
Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.
Факторы роста. Микроорганизмам для роста на питательных средах необходимы определенные дополнительные компоненты, которые получили название факторов роста. Факторы роста – необходимые для микроорганизмов соединения, которые они сами синтезировать не могут, поэтому их необходимо добавлят в питательные среды. Среди факторов роста различают: аминокислоты, необходимые для построения белков; пурины и пиримидины, которые требуются для образования нуклеиновых кис лот; витамины, входящие в состав некоторых ферментов. Для обозначения отношения микроорганизмов к факторам роста используют термины «ауксотрофы» и «прототрофы». Ауксотрофы нуждаются в одном или нескольких факторах роста, прототрофы могут сами синтезировать необходимые для роста соединения. Они способны синтезировать компоненты из глюкозы и солей аммония.
Механизмы питания. Поступление различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600 Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп. Наиболее простой механизм поступления веществ в клетку – простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молекулы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.
Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны – собственно переносчику. 
Белками-переносчиками могут быть пермеазы, место синтеза которых – цитоплазматическая мембрана. Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой.
Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сторону большей, т.е. как бы против течения, поэтому данный процесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных реакций в клетке.
Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видоизменяется в процессе переноса, например фосфорилируется. Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем-ферменты бактерий. Ферменты распознают соответствующие им метаболиты (субстраты), вступают с ними во взаимодействие и ускоряют химические реакции. Ферменты являются белками, участвуют в процессах анаболизма (синтеза) и катаболизма (распада), т.е. метаболизма. Многие ферменты взаимосвязаны со структурами микробной клетки. Например, в цитоплазматической мембране имеются окислительно-восстановительные ферменты, участвующие в дыхании и делении клетки; ферменты, обеспечивающие питание клетки, и др. Окислительно-восстановительные ферменты цитоплазматической мембраны и ее производных обеспечивают энергией интенсивные процессы биосинтеза различных структур, в том числе клеточной стенки. Ферменты, связанные с делением и аутолизом клетки, обнаруживаются в клеточной стенке. Так называемые эндоферменты катализируют метаболизм, проходящий внутри клетки. 
Экзоферменты выделяются клеткой в окружающую среду, расщепляя макромолекулы питательных субстратов до простых соединений, усваиваемых клеткой в качестве источников энергии, углерода и др. Некоторые экзоферменты (пенициллиназа и др.) инактивируют антибиотики, выполняя защитную функцию.
Различают конститутивные и индуцибельные ферменты. К конститутивным ферментам относят ферменты, которые синтезируются клеткой непрерывно, вне зависимости от наличия субстратов в питательной среде. Индуцибельные (адаптивные) ферменты синтезируются бактериальной клеткой только при наличии в среде субстрата данного фермента. Например, р-галактозидаза кишечной палочкой на среде с глюкозой практически не образуется, но её синтез резко увеличивается при выращивании на среде с лактозой или другим р-галактозидозом.
Некоторые ферменты (так называемые ферменты агрессии) разрушают ткань и клетки, обусловливая широкое распространение в инфицированной ткани микроорганизмов и их токсинов. К таким ферментам относят гиалуронидазу, коллаге-назу, дезоксирибонуклеазу, нейраминидазу, лецитовителлазу и др. Так, гиалуронидаза стрептококков, расщепляя гиалуроновую кислоту соединительной ткани, способствует распространению стрептококков и их токсинов.
Известно более 2000 ферментов. Они объединены в шесть классов: оксидоредуктазы – окислительно-восстановительные ферменты (к ним относят дегидрогеназы, оксидазы и др.); трансферазы, переносящие отдельные радикалы и атомы от одних соединений к другим; гидролазы, ускоряющие реакции гидролиза, т.е. расщепления веществ на более простые с присоединением молекул воды (эстеразы, фосфатазы, глкжозидазы и др.); лиазы, отщепляющие от субстратов химические группы негидролитическим путем (карбоксилазы и др.); изомеразы, превращающие органические соединения в их изомеры (фосфогексои-зомераза и др.); лигазы, или синтетазы, ускоряющие синтез сложных соединений из более простых (аспарагинсинтетаза, глю-таминсинтетаза и др.).
Различия в ферментном составе используются для идентификации микроорганизмов, так как они определяют их различные биохимические свойства: сахаролитические (расщепление сахаров), протеолитические (разложение белков) и другие, выявляемые по конечным продуктам расщепления (образование щелочей, кислот, сероводорода, аммиака и др.).
Ферменты микроорганизмов используют в генетической инженерии (рестриктазы, лигазы и др.) для получения биологически активных соединений, уксусной, молочной, лимонной и других кислот, молочнокислых продуктов, в виноделии и других отраслях. Ферменты применяют в качестве биодобавок в стиральные порошки («Ока» и др.) для уничтожения загрязнений белковой природы.
3.3. Дыхание бактерий
Дыхание, или биологическое окисление, основано на окислительно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят процессы окисления и восстановления: окисление – отдача донорами (молекулами или атомами) водорода или электронов; восстановление – присоединение водорода или электронов к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется анаэробным – нитратным, сульфатным, фумаратным). Анаэробиоз (от греч. аег – воздух + bios – жизнь) – жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.
По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, т.е. обязательные, аэробы, облигатные анаэробы и факультативные анаэробы. 
Облигатные аэробы могут расти только при наличии кислорода. Облигатные анаэробы (клостридии ботулизма, газовой гангрены, столбняка, бактероиды и др.) растут только на среде без кислорода, который для них токсичен. При наличии кислорода бактерии образуют перекисные радикалы кислорода, в том числе перекись водорода и супероксид-анион кислорода, токсичные для облигатных анаробных бактерий, поскольку они не образуют соответствующие инактивирующие ферменты. Аэробные бактерии инактивируют перекись водорода и супероксид-анион соответствующими ферментами (каталазой, пероксидазой и супероксиддисмутазой). Факультативные анаэробы могут расти как при наличии, так и при отсутствии кислорода, поскольку они способны переключаться с дыхания в присутствии молекулярного кислорода на брожение в его отсутствие. Факультативные анаэробы способны осуществлять анаэробное дыхание, называемое нитратным: нитрат, являющийся акцептором водорода, восстанавливается до молекулярного азота и аммиака.Среди облигатных анаэробов различают аэротолерантные бактерии, которые сохраняются при наличии молекулярного кислорода, но не используют его.
Для выращивания анаэробов в бактериологических лабораториях применяют анаэростаты – специальные емкости, в которых воздух заменяется смесью газов, не содержащих кислорода. Воздух можно удалять из питательных сред путем кипячения, с помощью химических адсорбентов кислорода, помещаемых в анаэростаты или другие емкости с посевами.

3.4. Рост и размножение бактерий
Жизнедеятельность бактерий характеризуется ростом – формированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размножением – самовоспроизведением, приводящим к увеличению количества бактериальных клеток в популяции.
Бактерии размножаются путем бинарного деления пополам, Реже путем почкования.
Актиномицеты, как и грибы, могут размножаться спорами. Актиномицеты, являясь ветвящимися бактернями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки, а грамотрицательные – путем перетяжки, в результате образования гантелевид-ных фигур, из которых образуются две одинаковые клетки.
Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной нитью), приводящая к удвоению молекул ДНК бактериального ядра – нуклеоида. Репликация хромосомной ДНК осуществляется от начальной точки огі (от англ, origin – начало). 
Хромосома бактериальной клетки связана в области огі с цитоплазматической мембраной. Репликация ДНК катализируется ДНК-полимеразами. Сначала происходит раскручивание (деспирализация) двойной цепи ДНК, в результате чего образуется репликативная вилка (разветвленные цепи); одна из цепей, достраиваясь, связывает нуклеоти-ды от 5'- к З'-концу, другая – достраивается посегментно.
Репликация ДНК происходит в три этапа: инициация, элонгация, или рост цепи, и терминация. Образовавшиеся в результате репликации две хромосомы расходятся, чему способствует увеличение размеров растущей клетки: прикрепленные к цитоплазматической мембране или ее производным (например, мезосомам) хромосомы по мере увеличения объема клетки удаляются друг от друга. Окончательное их обособление завершается образованием перетяжки или перегородки деления. Клетки с перегородкой деления расходятся в результате действия аутоли-тических ферментов, разрушающих сердцевину перегородки деления. Аутолиз при этом может проходить неравномерно: делящиеся клетки в одном участке остаются связанными частью клеточной стенки в области перегородки деления. Такие клетки располагаются под углом друг к другу, что характерно для дифтерийных коринебактерий.
Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру – периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура – непрерывной.
При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:
 лаг-фаза;
 фаза логарифмического роста;
 фаза стационарного роста, или максимальной концентрации
 бактерий; 
 фаза гибели бактерий.
Эти фазы можно изобразить графически в виде отрезков кривой размножения бактерий, отражающей зависимость логарифма числа живых клеток от времени их культивирования. Лаг-фаза (от англ, lag – запаздывание) – период между посевом бактерий и началом размножения. Продолжительность лаг-Фазы в среднем 4.5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; нарастает количество нуклеиновых кислот, белка и других компонентов. Фаза логарифмического (экспоненциального) роста является периодом интенсивного деления бактерий. 
Продолжительность ее около 5. 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20-40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувствительностью компонентов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др. Затем наступает фаза стационарного роста, при которой количество жизнеспособных клеток остается без изменений, составляя максимальный уровень (М-концентрация). Ее продолжительность выражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования. Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжительность ее колеблется от 10 ч до нескольких недель. Интенсивность роста и размножения бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.
Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы; см. главу 5), различной консистенции и цвета, зависящего от пигмента бактерий.
Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают ее, например синегнойная палочка (Pseudomonas aeruginosa) окрашивает среду в синий цвет. Другая группа пигментов нерастворима в воде, но растворима в органических растворителях. Так, колонии «чудесной палочки» имеют кроваво-красный пигмент, растворимый в спирте. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.
Наиболее распространены среди микроорганизмов такие пигменты, как каротины, ксантофиллы и меланины. Меланины являются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксидцисмутазой и перок-сидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают антимикробным, антибиотикоподобным действием.
Вид, форма, цвет и другие особенности колоний на плотной питательной среде могут учитываться при идентификации бактерий, а также отборе колоний для получения чистых культур.
В промышленных условиях при получении биомассы микроорганизмов с целью приготовления антибиотиков, вакцин, диагностических препаратов, эубиотиков культивирование бактерий и грибов осуществляют в ферментерах при строгом соблюдении оптимальных параметров для роста и размножения культур (см. главу 6).


Раскрутка сайта - регистрация в каталогах PageRank Checking Icon Яндекс цитирования